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This paper shows that under certain conditions a solution of the minimax
problem mina<x1< } } } <xn<b max1�i�n+1 fi (x1 , ..., xn) admits the equioscillation

characterizations of Bernstein and Erdo� s and has strong uniqueness. This problem
includes as a particular example the optimal Lagrange interpolation problem.
� 1998 Academic Press

1. INTRODUCTION

As we know, the equioscillation conditions of Bernstein [2] and Erdo� s
[7] were originally conjectured to characterize optimal Lagrange inter-
polation. They have been confirmed not only for the original interpolation
problem but also for many other optimal (extremal) problems [3, 5, 8�12].
It is natural to ask what kind of extremal problems admit the equioscilla-
tion characterizations of Bernstein and Erdo� s. The first aim of this paper
is to investigate a general minimax problem, a solution of which admits
characterizations of Bernstein and Erdo� s and which includes most of the
above-mentioned examples. The second aim is to provide different proofs
(based on Lagrange's method of multipliers for nonlinear programming
with constraints). In addition, this paper also gives some new results,
including an analogue of strong uniqueness for best uniform approximation
by a Haar subspace [6, p. 81].

The minimax problem mentioned above is the following.
Let &�<a<b<�, n�1, and

X :=[x=(x1 , x2 , ..., xn): x0 :=a<x1<x2< } } } <xn<xn+1 :=b].
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Let fi (x)�0, i=1, 2, ..., n+1, be continuously differentiable functions on X
and

f (x) := max
1�i�n+1

fi (x).

We will investigate the minimax problem: Find a vector y # X such that

f (y)= inf
x # X

f (x).

The main results of this paper are the following equioscillation character-
izations of Bernstein and Erdo� s for such a minimax solution.

Theorem 1. Assume that the functions fi satisfy the conditions

lim
min0�j�n (xj+1&xj) � 0

max
1�i�n

| fi+1(x)& fi (x)|=� (1.1)

and

Dk(x) :=det \�fi (x)
�xj +

n n+1

j=1, i=1, i{k
{0, x # X, k=1, 2, ..., n+1.

(1.2)

Then the following statements are valid:

(a) there exists a unique vector y # X such that

f (y)=min
x # X

f (x); (1.3)

(b) Equation (1.3) holds if and only if

f1(y)= f2(y)= } } } = fn+1(y); (1.4)

(c) for any vector x # X"[y]

min
1�i�n+1

fi (x)< f (y)< max
1�i�n+1

fi (x); (1.5)

(d) for each vector w # X there exists a constant #(w)>0 such that for
all x # X

max
1�i�n+1

[ fi(x)& fi (w)]�#(w) &x&w&, (1.6)

464 YING GUANG SHI



File: DISTIL 313503 . By:CV . Date:25:02:98 . Time:14:54 LOP8M. V8.B. Page 01:01
Codes: 2430 Signs: 1350 . Length: 45 pic 0 pts, 190 mm

where &x&w&=max1� j�n |xj&wj |; in particular, there exists a constant
#*>0 such that for all x # X

f (x)� f (y)+#* &x&y&. (1.7)

We note that the actual verification of the assumptions (1.1) and (1.2)
for the special case of Lagrange interpolation occupies a nontrivial part
of [3].

We will also give other results, which are already proved in [3].

Theorem 2. Let (1.1) and (1.2) hold. Then

(a) the map F: X � Rn: x [ ( fi+1(x)& fi (x))n
i=1 is a homeomorphism

of X onto Rn;

(b) if for u, v # X,

fi (u)� fi (v), i=1, 2, ..., n+1,

then u=v;

(c) for each fixed k, 1�k�n+1, the map Fk : X � Rn : x [ ( fi (x) i{k

is (globally) one-to-one.

It is worth pointing out that Statements (a)�(d) of Theorem 1 are the
analogues of the theorems of existence and uniqueness, alternation, de La
Valle� e Poussin, and strong uniqueness for best uniform approximation by
a Haar subspace, respectively [6, pp. 72�81].

Our proofs are based on the following, in which

{h(y)=\�h(x)
�x1

, ...,
�h(x)
�xn +}x=y

.

Theorem A [1, Theorem 3.4]. Assume that g, g1 , ..., gm are continuously
differentiable on an open set S/Rn. If y # S is a solution of the problem to
minimize g(x) subject to x # S and gi (x)�0, i=1, 2, ..., m, then there exists
a vector *=(*0 , *1 , ..., *m){0, *�0, such that

*0 {g(y)& :
m

i=1

*i {gi (y)=0

and

*i gi (y)=0, i=1, 2, ..., m.

We put some auxiliary lemmas in the next section and the proofs of the
theorems in the last section.
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2. AUXILIARY LEMMAS

Lemma 1. If (1.1) holds then there exists a vector y # X satisfying (1.3).

Proof. Since the fi are nonnegative, (1.1) implies

lim
min0�j�n(xj+1&xj) � 0

f (x)=�. (2.1)

Hence, the infimum may be taken over, instead of X, the compact subset
of X

[x=(x1 , x2 , ..., xn):

a+n=�x1+(n&1) =� } } } �xn&1+=�xn�b&=]

for some =>0 sufficiently small. K

Lemma 2. Let (1.2) hold. If y # X satisfies (1.3) then (1.4) is valid.

Proof. We introduce a new argument ! and a new function f0(!, x)=!.
Let us consider the programming problem:

min
! # R, x # X

f0(!, x) (2.2)

subject to

f0(!, x)& fi(x)�0, i=1, 2, ..., n+1.

It is not hard to see that if (1.3) holds then ( f (y), y) is a solution of the
above-mentioned problem. Applying Theorem A one can find a vector
*=(*0 , *1 , ..., *n+1){0, *�0, such that

*0 {f0( f (y), y)& :
n+1

i=1

*i {[ f0( f (y), y)& fi (y)]=0, (2.3)

*i[ f0( f (y), y)& fi (y)]=0, i=1, 2, ..., n+1.

(2.4)

Equation (2.3) becomes

*0& :
n+1

i=1

*i=0

and (2.4) becomes

:
n+1

i=1

*i
�fi (y)

�xj
=0, j=1, 2, ..., n. (2.5)
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Equation (2.5) by (1.2) implies, remembering *�0,

*i>0, i=1, 2, ..., n+1, (2.6)

and hence (1.4) follows from (2.4). K

Lemma 3. Let (1.1) and (1.2) hold. Then

D(x) :=det \�[ fi+1(x)& fi (x)]
�xj +

n

i, j=1

{0, x # X. (2.7)

Proof. Although (2.7) is verified in the proof of [3, Lemma 3] only for
the specific case of the optimal Lagrange interpolation, it remains true for
the present general minimax problem. But, for completeness, we now give
another proof. There must exist a nonzero vector (*1 , (x), ..., *n+1(x)) with
at least one positive component that satisfies

:
n+1

i=1

*i (x)
�fi (x)

�xj
=0, j=1, 2, ..., n. (2.8)

Then by (1.2) we can conclude that *i (x){0 for all i. Comparing (2.8)
with (2.5) and (2.6) according to continuity of �fi (x)��xj and connectivity
of X we can further conclude *i (x)>0 for all i. Thus for a fixed x # X the
system of homogeneous linear equations with unknowns *1 , ..., *n+1

:
n+1

i=1

*i=0,

:
n+1

i=1

*i
�fi (x)

�xj
=0, j=1, 2, ..., n

has only the trivial solution, for otherwise *i *k<0 would occur for some
indices i and k, a contradiction. Therefore, the determinant of its coefficient
matrix is nonzero:

1 1 } } } 1

}
�f1(x)

�x1

} } }

�f2(x)
�x1

} } }
} } }
} } }

�fn+1(x)
�x1

} } } }{0.

�f1(x)
�xn

�f2(x)
�xn

} } }
�fn+1(x)

�xn
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Subtracting each column from its successor, proceeding from right to left,
and expanding the resulting determinant along the first row just gives (2.7).

K

3. PROOFS OF THEOREMS

3.1. Proof of Theorem 2. (a) Equation (2.7) implies that the map F is
a local homeomorphism (the definition of which can be found, say, in
[13, p. 103]). It, coupled with (1.1), means that F is a homeomorphism by
a well-known result (see [3, 4]).

(b) Statement (b) is given by the proof of [3, Theorem 2]. But
we now provide a simpler proof using a somewhat different approach. If
fi (u)= fi (v) for all i then u=v by Statement (a). Now suppose that
fk(u)< fk(v) for some k, 1�k�n+1. Let us consider the programming
problem:

min
x # X

fk(x) (3.1)

subject to

fi (x)� fi (v)&:, i # N :=[1, ..., k&1, k+1, ..., n+1]. (3.2)

Denote by A the set of : for which the feasible set of this programming
problem is nonempty. Since the feasible set for :�0 contains u, we
have (&�, 0]/A. Meanwhile (1.2) implies that A is open. Thus :� :=
sup: # A :>0, :� � A, and by (2.1) for each :<:� one can find a solution
w: # X. By Theorem A there exists a vector *=(*1 , *2 , ..., *n+1){0, *�0,
such that

*k {fk(w:)& :
i # N

*i {[ fi (v)&:& fi (x)]|x=w:
=0, (3.3)

*i[ fi (v)&:& fi (w:)]=0, i # N. (3.4)

Since each fi (v) is just a constant, (3.3) yields

:
n+1

i=1

*i
�fi (w:)

�xj
=0, j=1, 2, ..., n, (3.5)

which by (1.2) implies *i>0 for all i (since *{0 and *�0). Then by (3.4)
we get

fi (w:)= fi (v)&:, i # N. (3.6)
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By (1.2), it follows that w: is uniquely determined by (3.6), hence, by the
Implicit Function Theorem, w: is a continuous function of :. Meanwhile,
since w: is a solution of the programming problem (3.1) subject to (3.2)
and the feasible set corresponding to :1 contains the one corresponding to
:2 if :1<:2 , we can conclude that fk(w:) is increasing on [0, :� ) from fk(w0)
to � (because sup:<:� fk(w:)<� can be shown to imply that :� # A,
contradicting the previous conclusion :� � A). Clearly, from the definition

fk(w0)� fk(u)< fk(v). (3.7)

Therefore there is an :>0 such that

fk(w:)= fk(v)&:, (3.8)

which, coupled with (3.6), implies

fi+1(w:)& fi (w:)= fi+1(v)& fi (v), i=1, 2, ..., n.

By statement (a) we have w:=v, contradicting (3.8).

(c) If Fk(u)=Fk(v) then either fi (u)� fi (v) for all i or fi (u)� fi (v)
for all i. Hence u=v by statement (b). K

3.2. Proof of Theorem 1. Statements (a)�(c) are given by Lemmas 1
and 2 as well as Theorem 2. The remainder of the proof is devoted to
showing Statement (d). Clearly, in the case when w=y, (1.6) by (1.4)
becomes (1.7), where #*=#(y). Now let us show (1.6).

The conclusion is trivial for x=w. Now let x # X"[w]. In this case put

di (x) :=
fi (x)& fi (w)

&x&w&
, i=1, 2, ..., n+1

and

d(x) := max
1�i�n+1

di (x).

It suffices to show d(x)�#>0. Suppose to the contrary that there would
be a sequence x(m) # X"[w] such that d(x(m)) � 0 as m � �. We claim
that x(m) � w as m � �. In fact, let x(mk) be an arbitrary convergent
subsequence of x(m): x(mk) � z (k � �). From the definition we have

fi (x(mk))& fi (w)�d(x(mk)) &x(mk)&w&, i=1, 2, ..., n+1.
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Then by the assumption that d(x(m)) � 0 as m � �, fi (x(mk)) must be
bounded. By virtue of (2.1) we conclude z # X and hence

fi (z)& fi (w)�0, i=1, 2, ..., n+1.

Applying Theorem 2 gives z=w. This proves that x(m) � w as m � �.
Using the differential expression for multivariate functions we have

fi (x(m))& fi (w)={fi (w)(x(m)&w)+o(&x(m)&w&), i=1, 2, ..., n+1,

or equivalently,

di (x
(m))=

{fi (w)(x(m)&w)
&x (m)&w&

+o(1), i=1, 2, ..., n+1. (3.9)

Assume without loss of generality (passing to a subsequence if necessary)
that all the following limits exist:

+i := lim
n � �

di (x(m)), i=1, 2, ..., n+1,

&j := lim
m � �

x (m)
j &wj

&x(m)&w&
, j=1, 2, ..., n.

Then (3.9) yields

+i= :
n

j=1

&j
�fi (w)

�xj
, i=1, 2, ..., n+1. (3.10)

We claim that

+i=0, i=1, 2, ..., n+1. (3.11)

In fact, multiplication of (2.8) with &j and summation (after replacing x by
w) yield

:
n+1

i=1

*i (w) :
n

j=1

&j
�fi (w)

�xj
=0.

Substituting (3.10) into the above equation gives

:
n+1

i=1

*i (w) +i=0. (3.12)
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But from the definition di (x(m))�d(x (m)), so +i�limm � � d(x(m))=0 for
all i. Remembering *i (w)>0 for all i, (3.12) implies (3.11). Therefore (3.10)
becomes

:
n

j=1

&j
�fi (w)

�xj
=0, i=1, 2, ..., n+1.

Since (&1 , &2 , ..., &n){0, we conclude that Dk(w)=0 for all k. This
contradicts (1.2) and proves (1.6). K
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